Ab Initio Based Tight-Binding Hamiltonian for the Dissociation of Molecules at Surfaces
نویسندگان
چکیده
A tight-binding total-energy (TBTE) method has been developed to interpolate between firstprinciples results describing the dissociation of molecules at surfaces. The TBTE scheme requires only a relatively small number of ab initio energies as input and gives a reliable global representation of the ab initio potential energy surface to within 0.1 eV accuracy compared to the ab initio results. This approach will open the way to the ab initio molecular dynamics description of reactions invoking many atoms and long time scales that are currently not accessible by first-principles methods. [S0031-9007(99)08464-1]
منابع مشابه
Encapsulation of Methane Molecules into C60 Fullerene Nanocage: DFT and DTFB-MD Simulations
Extensive urbanization has greatly raised the demand for cleaner coal- and petroleum-derived fuels. Mainly composed of methane, natural gas represents a promising alternative for this purpose, making its storage a significant topic. In the present research, deposition of methane molecules in C60 fullerene was investigated through a combined approach wherein density functional based tight bindin...
متن کاملCalculation for Energy of (111) Surfaces of Palladium in Tight Binding Model
In this work calculation of energetics of transition metal surfaces is presented. The tight-binding model is employed in order to calculate the energetics. The tight-binding basis set is limited to d orbitals which are valid for elements at the end of transition metals series. In our analysis we concentrated on electronic effects at temperature T=0 K, this means that no entropic term will be pr...
متن کاملElectronic Band Structure of Transition Metal Dichalcogenides from Ab Initio and Slater–Koster Tight-Binding Model
Semiconducting transition metal dichalcogenides present a complex electronic band structure with a rich orbital contribution to their valence and conduction bands. The possibility to consider the electronic states from a tight-binding model is highly useful for the calculation of many physical properties, for which first principle calculations are more demanding in computational terms when havi...
متن کاملHydrogen storage capacity of Si-decorated B80 nanocage: firstprinciples DFT calculation and MD simulation
Hydrogen storage capacity of Si-coated B80 fullerene was investigated based on density functional theory calculations within local density approximation and generalized gradient approximation. It is found that Si atom prefer to be attached above the center of pentagon with a binding energy of -5.78 eV. It is inferred that this binding is due to the charge transfer between the Si atom and B80 ca...
متن کاملElectronic Structure of Silicon-Based Nanostructures
We have developed an unifying tight-binding Hamiltonian that can account for the electronic properties of recently proposed Si-based nanostructures, namely, Si graphene-like sheets and Si nanotubes. We considered the sps and sp models up to firstand second-nearest neighbors, respectively. Our results show that the Si graphene-like sheets considered here are metals or zerogap semiconductors, and...
متن کامل